

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(12B) 28-32 Li Huaming, Kang Baosheng

28

Real-time physically cloth simulation with CUDA

Li Huaming*, Kang Baosheng

College of Information Science and Technology, Northwest University, Xi’an 710127, China

Received 1 September 2014, www.cmnt.lv

Abstract

With the development of the simulation technique, deformable cloth simulation has become highly desired. It can be widely used in

many fields such as game, animation, virtual surgery, etc. Real-time algorithm is the most urgent bottleneck problem that needs to be

solved. This paper introduces a solution to implement deformable simulation of cloth in real time, accomplished through using a

meshless simulation technique, which is known as position-based dynamics, implemented using CUDA parallel framework. The

simulation results are directly sent to vertex buffer object for rendering to avoid the costly communication between CPU and GPU.
The experimental results show significate improvements on performance in comparison to CPU algorithm.

Keywords: Position-based Dynamics, Cloth Simulation, CUDA, Parallel Algorithm, Uniform Grid

*Corresponding author e-mail: huaminglee@hotmail.com

1 Introduction

As the graphics industry continues to grow, cloth simulation
continues to be an important issue for creating visual effects.
It can be applied in many fields such as visual simulation,
games, virtual surgery, safety training, etc. Deformable body
simulation was introduced to graphics very early by
Terzopoulos [1], since then, a lot of work has been published
and related technologies are growing rapidly. Physical-based
methods are the main direction of the majority research in
this field. Those methods can be split into two main cate-
gories: mesh based methods and meshless methods.

One of the most popular mesh based methods to simu-

lating deformable solids is the Finite Element Method

(FEM). O’Brien [2] used FEM to simulate solid fracture

with linear tetrahedral elements. Kaufmann [3] proposed to

using discontinuous Galerkin FEM support for arbitrary

non-convex polyhedral elements allows for the efficient

simulation of deformable object cutting. For thin defor-

mable bodies, spring-mass technique is very popular with

cloth simulation. Provot [4] was the first to use spring-

mass network for simulating cloth in 1995. This technique

is also used to convert any geometry into a soft body by

using angular and linear spring [5].Non-linear springs [6]

can be used to capture cloth behaviour more faithfully.

Contrasting, the most popular meshless method is

position-based dynamics (PBD) introduced by Müller [7]

in 2007, which omits the velocity and acceleration layer

and immediately works on the positions, can be sufficient

to create the desired deformable effects. This method can

be used to simulate a variety of materials such as soft

bodies, cloth or even fluids by using different constraints.

Then Müller [8] presented a non-linear multigrid algorithm

to speedup position based dynamics. In order to add wrink-

les to simulated cloth, a method [9] has been presented that

attach a higher resolution wrinkle mesh to the coarse base

mesh allowing the wrinkle vertices to deviate from their

attachment positions within a limited range. More recently,

Kim [10] proposed an approach that applies unilateral dis-

tance constraint between particles to distant attachment

point, preventing elastic over deformation of cloth.

No matter what kind of algorithm, deformation’s compu-

tational complexity is always relatively large. How to build a

simulator with the ability of real-time simulation is still an

active area of research. A parallel computing approach is

explored to satisfy real time constraints required by real time

physics simulation. Since nowadays graphic processor unit

(GPU) has evolved into an extremely powerful and flexible

processor, while the compute unified device architecture

(CUDA) [11] is specialized to compute intensive highly

parallel computation. The goal of this paper is to design an

algorithm for implementing a general position based dyna-

mics model [7] for cloth simulation on modern GPUs with

the purpose of speeding the simulation up.

2 Methodology

Position-based dynamics became popular in the last years
because they are fast, robust and controllable. It allows
for imposing non-linear constraints of a geometric nature
on a deformable surface, as in the case of volume preser-
vation of the whole surface or of maintaining distance
between two nodes of the mesh during deformation. This
permits the modelling of the virtual structures without the
use of internal or external forces, which simplifies the
deformable model and produces unconditionally stable
simulations, as a result of the elimination of the over-
shooting problem.

2.1 PHYSICAL MODEL OF CLOTH

The cloth to be simulated is represented by a set of N

particles and the set of M constraints. Those particles are

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(12B) 28-32 Li Huaming, Kang Baosheng

29

large collection of masses connected by spring

constraints. So the mass-spring model is converted into a

system of constraints and this model can be solved

sequentially and iteratively, by directly moving nodes to

satisfy each constraint, until sufficiently stiff cloth is

obtained. Figure 1 shows three different types of

constraints of our cloth physical model.

FIGURE 1 Different types of constraints of physical model.

2.2 THE SOLVER

The solver function projects the positions of vertices in

the direction of the constraints to satisfy the constraints.

The algorithm uses the idea of a Gauss-Seidel-type

iteration in that it solves each constraint independently.

The solver is repeatedly called through all the constraints

to project the particles to valid locations with respect to

the given constraint alone.

2.3 CONSTRAINTS PROJECTION

A constraint can be expressed as j 1 2 nC (p ,p ,…,p) 0 .

During the simulation, given the current spatial

configuration p of the set of particles, we want to find a

correction pΔ such that 0=p)+C(p Δ . The constraint

equation is approximated by

0=pkC(p) +C(p)p)+C(p p Δ•Δ ∇≈ , (1)

where ,1}…{0,k ∈ is the stiffness parameter. The

problem of the system being under-determined is solved

by restricting pΔ to be in the direction of C p∇ , which

conserves the linear and angular momenta. This means

that only one scalar λ (a Lagrange multiplier) has to be

found such that the correction

C(p) λ=Δp p∇ (2)

solves Equation (1). This yields the following formula for

the correction vector of a single particle i

C(p) -sw=p ipii ∇Δ , (3)

where

()

()∑
2

∇j pj pCw

pC
s

j

= (4)

and

1i iw m . (5)

In this context, stiffness k can be considered as the

speed with which the particle positions converge towards

a legal spatial state, that is, a state in which all the

constraints are satisfied. By tuning the value of k , It can

be controlled how much a constraint is stringent during

the evolution of the simulation. For example, a distance

constraint between two particles with 5.0=k behaves

similar to a spring, whereas with 01.k = behaves nearly

like a stiff solid.

3 Parallel Algorithm

During the simulation, deformation is computed by
comparing the current deformed configuration of point
samples with their reference configuration. Algorithm
consists of two parts: the simulation and rendering.
Workflow of the entire algorithm can be described as
follows: The 3D model of the object to be simulated is
first discretized as a set of discrete particle point. When
the object is affected by force, the deformation will be
activated and the system enters into the simulation stage.
After the simulation of each time step, those particle
points are updated and directly sent to the GPU for
rendering. To take advantage of CUDA, algorithm has
been considering as many simple particle interactions in
parallel, over more advanced algorithms that run serially.
Implementation of the algorithm of each time step can be
described as follows:

1) Compute per particle deformation gradient, apply

forces and predict position
2) Compute per particle, update and save the uniform

grid structure.
3) Use one (or more) PBD solver steps on the current

particle state. Solve all the constraints of this level
using non-linear Gauss-Seidel.

4) Update the position of each particle
5) Read data calculated by CUDA from VBO
6) Render the data in VBO directly on GPU.

For this paper, we have only considered the elastic
force and the simplest possible spatial subdivision
structure. The primary goal is to illustrate the potential
acceleration that could be achieved by incorporating
CUDA parallelization into the simulation.

4 Cuda Implementation

The algorithm we designed is inherently parallel, and

easy to implement the speedups by performing operations

on the Cuda. Most steps of the algorithm only involve

computing matrices based on local information, or infor-

mation from neighbor particles, very little synchroniza-

tion is required. Each iteration requires a matrix multiply

and a few dot products. These operations do not perform

particularly well on a GPU, but easily outperform CPU

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(12B) 28-32 Li Huaming, Kang Baosheng

30

implementations. Rough profiling of the sequential im-

plementation revealed that these solves take the majority

of the computation time, in some cases as much as 90%.

Hence any speedup by performing these computations on

the GPU will make a significant difference in overall

runtime. Additionally, the matrices do not need to be

stored explicitly; the matrix vector multiplication opera-

tion can be implemented as a loop over particles and their

neighbors, resulting in predictable memory accesses and

little synchronization.

The simulation on CUDA uses a uniform grid data

structure as an acceleration structure in collision detection

presented which distance values of particles are computed

for each grid point. The major advantages of the uniform

grid are the simplicity to implement them and the

constant time necessary for distance queries at any of the

grid points. However, uniform grids have drawbacks,

resulting from their constant sampling rate, the grid data

structure is generated from scratch each time step. We

detect collisions between particles using the discrete

element method (DEM) method, and collision model

consists of several forces, including a spring force, which

forces the particles apart. The method for update the

uniform grid is that using GPU atomic operations, which

allow multiple threads to update the same value in global

memory simultaneously without conflicts. The calculated

results are written to a Vertex Buffer Object (VBO) and

are directly rendered on the GPU, no copying is

necessary between CPU and GPU except at the first

frame of simulation.

In the implementation, we chose to map each particle

to a CUDA thread, using a block size of 32 threads. Each

particle calculates which grid cell it is in. It then loops

over the neighboring 27 grid cells (3x3x3 cells) and

checks for collisions with each of the particles in these

cells. If there is a collision the particle’s velocity is

modified. There are several points in the algorithm that

require global synchronization. Figure 2 illustrates the

control flow of the whole algorithm. Additionally, atomic

addition is required to avoid race conditions when

calculating the forces between all particles.

Initialize the dataInitialize the data

Copy point and force date

to GPU

Copy point and force date

to GPU

Begin OpenGL

Simulation Loop

Begin OpenGL

Simulation Loop

ExitExit

Map Particle Buffer for

Cuda

Map Particle Buffer for

Cuda

Cuda Call:

 PBD solver

Cuda Call:

 PBD solver

Map Particle Buffer for

OpenGL

Map Particle Buffer for

OpenGL

RenderRender

Predict the particle

position

Predict the particle

position

Iteration all the

constraints

Iteration all the

constraints

Collision detectionCollision detection

Update position and

velocity

Update position and

velocity

Calculate out-side forceCalculate out-side force

Update uniform gridUpdate uniform grid

FIGURE 2 Overview of control flow between OpenGL and CUDA.

A major advantage of using CUDA for this simulation

is that results can be rendered efficiently as they are

calculated, since the data is already stored on the GPU.

We displayed the results by swapping a data buffer back

and forth between OpenGL and CUDA. CUDA includes

functions specifically for this type of interaction. The

buffer is initially created as an OpenGL VBO, but during

CUDA kernel calls, it is unmapped from OpenGL while

its data is manipulated by the CUDA code. At the

completion of the kernel function, the buffer is mapped

back to OpenGL where it is rendered. This buffer

contains the position data for the particles in the

simulation as 4-tuple float values, corresponding to the X,

Y, Z, and W homogenous coordinates. This is

represented using a float4 data type in CUDA.
Incorporating OpenGL into a CUDA program

introduces a fair amount of additional overhead and has a
significant impact on the overall structure and
organization of the code. Once all the initialization has

been taken care of for both CUDA and OpenGL, the
program enters into the main animation loop for
OpenGL. While in this loop, it uses several callback
functions to handle input and output. We made the
CUDA kernel calls from within the “display” callback
function. This way, the display is updated as soon as new
results are calculated. The downside of this organization
is that as the kernel execution time increases for larger
simulations, it causes the display function to take longer,
which results in a sluggish program response to user
input.

5 Results

We have integrated the algorithm into a real time physics
simulation system. It is tested our simulator by dropping
a piece of cloth fell on a sphere. Selected frames are
shown in Figure 3.

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(12B) 28-32 Li Huaming, Kang Baosheng

31

FIGURE 3 Example simulation of a piece of cloth fell on a sphere.

We compared our results to a CPU implementation

in order to illustrate the speedup of our parallel algorithm.

The testing is performed on a PC using Window 7

System with Intel Xeon X3320 CPU, and NVIDIA

GeForce GTX560Ti (1.0GB video memory and 384

core). Figure 4 and Table 1 show how our method deals

with the number of particles.

TABLE 1 Runtimes per timestep (ms)

Number of particles 512 4096 16384 32768

CPU 25 36 1374 4910
GPU 34 61 209 541

Update Grid Average Time

(GPU)
14 21 72 242

FIGURE 4 The performance of testing with different particle number

The performance for small numbers of particles is
comparable between the sequential and parallel imple-
mentations, with only a slight speedup for the parallel
version. With a large number of particles, the CUDA im-
plementation is significantly faster than the sequential
implementation. With 32,768 particles, the CUDA imple-
mentation was 20 times faster than the sequential version.
It also shows that the update of uniform grid is a signi-
ficant bottleneck in our implementation. The atomic-
based algorithm is generally slower and we can use
sorting method to improve this phenomenon.

6 Conclusions

This paper presents a parallel CUDA algorithm for the

implementation of cloth simulation based on general
position based dynamics. Then we discuss the whole
control flow between the CPU and GPU. Through solid
model discretized, particle interactions in parallel, the use
of a uniform grid data structure, finally, algorithm has
been achieved both include PBD solver and DEM. As
expected, the CUDA implementation provided significant
speedup over the sequential implementation of the
simulation, especially for large problem sizes. But the
uniform grid update algorithm used in parallel algorithm
performed poorly. Investigating this further is a direction
of future work. Through expanding PBD constraints, this
algorithm can be quickly applied to other deformable
areas, such as the simulation of biological soft tissue,
elastic-plastic solid, and fluids.

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(12B) 28-32 Li Huaming, Kang Baosheng

32

References

[1] Terzopoulos D, Platt J, Barr A 1987 the 14th annual conference on

Computer graphics and interactive techniques ACM Press: New
York 205-14

[2] O'Brien J F, Hodgins J K 1999 the 26th annual conference on

Computer graphics and interactive techniques ACM Press: New
York 137-46

[3] Deleted by CMNT Editor
[4] Provot X 1996 Deformation Constraints in a Mass-Spring Model to

Describe Rigid Cloth Behavior Graphics Interface 147-54

[5] Joukhadar A and Laugier C 1995 the IEEE/RSJ International

Conference on Intelligent Robots and Systems IEEE Press:
Pittsburgh 305-10

[6] Volino P, Magnenat-Thalmann N, Faure F 2009 A simple approach

to nonlinear tensile stiffness for accurate cloth simulation ACM

Transactions on Graphics 28(4) 1-16

[7] Müller M, Heidelberger B and Hennix M 2006 Position based

dynamics Journal of Visual Communication and Image

Representation 18(2) 109-18

[8] Müller M 2008 Hierarchical Position Based Dynamics Virtual
Reality Interactions and Physical Simulations Eurographics

Association: Grenoble 1-10

[9] Deleted by CMNT Editor
[10] Deleted by CMNT Editor
[11] Nickolls J, Buck I, Garland M 2008 Scalable Parallel

Programming with CUDA Queue 6(2) 40-53

Authors
Li Huaming, 1977.06, Xi'an County, Shaanxi Province, P.R. China

Current position, grades: PhD student, College of Information Science and Technology, Northwest University, China
University studies: B.Sc. in Computer Science from Northwest University in China. He received his M.Sc. from Northwest University in China.
Scientific interest: His research interest fields include Computer Graphics, Virtual Reality, GPU Parallel Computing
Publications: 5 papers published in various journals.
Experience: He has completed one scientific research projects.

Kang Baosheng, 1961.10, Xi'an County, Shaanxi Province, P.R. China

Current position, grades: Professor of College of Information Science and Technology, Northwest University, China.
University studies: received his B.Sc. in Mathematics from Northwest University in China. He received his M.Sc. from Northwest University in
China.
Scientific interest: His research interest fields include Computer Graphics, Computer Aided Geometric Design, Multimedia Technology
Publications: more than 50 papers published in various journals.
Experience: He has teaching experience of 29 years, has completed more than ten scientific research projects.

